Deterministic limit of temporal difference reinforcement learning for stochastic games

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid Algorithms for Temporal Difference Reinforcement Learning

We introduce a class of Multigrid based temporal difference algorithms for reinforcement learning with linear function approximation. Multigrid methods are commonly used to accelerate convergence of iterative numerical computation algorithms. The proposed Multigrid-enhanced TD(λ) algorithms allows to accelerate the convergence of the basic TD(λ) algorithm while keeping essentially the same per-...

متن کامل

Temporal Difference Learning for Nondeterministic Board Games

We use temporal difference (TD) learning to train neural networks for four nondeterministic board games: backgammon, hypergammon, pachisi, and Parcheesi. We investigate the influence of two variables on the development of these networks: first, the source of training data, either learner-vs.self or learner-vs.-other game play; second, the choice of attributes used: a simple encoding of the boar...

متن کامل

Online Reinforcement Learning in Stochastic Games

We study online reinforcement learning in average-reward stochastic games (SGs). An SG models a two-player zero-sum game in a Markov environment, where state transitions and one-step payoffs are determined simultaneously by a learner and an adversary. We propose the UCSG algorithm that achieves a sublinear regret compared to the game value when competing with an arbitrary opponent. This result ...

متن کامل

Temporal-Difference Reinforcement Learning with Distributed Representations

Temporal-difference (TD) algorithms have been proposed as models of reinforcement learning (RL). We examine two issues of distributed representation in these TD algorithms: distributed representations of belief and distributed discounting factors. Distributed representation of belief allows the believed state of the world to distribute across sets of equivalent states. Distributed exponential d...

متن کامل

Multiagent Reinforcement Learning in Stochastic Games

We adopt stochastic games as a general framework for dynamic noncooperative systems. This framework provides a way of describing the dynamic interactions of agents in terms of individuals' Markov decision processes. By studying this framework, we go beyond the common practice in the study of learning in games, which primarily focus on repeated games or extensive-form games. For stochastic games...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2019

ISSN: 2470-0045,2470-0053

DOI: 10.1103/physreve.99.043305